Section 3.4

One to One Properties

$a^{x}=a^{y}$ if and only if $x=y . \quad \log _{a} x=\log _{a} y$ if and only if $x=y$.

Inverse Properties

$a^{\log _{a} x}=x, \quad \log _{a} a^{x}=x$.

Problem 1. In the following exercises, solve for x.
a) $4^{x}=256$
b) $\left(\frac{1}{6}\right)^{x}=216$
c) $e^{x}=5$
d) $\ln x=-2$
e) $\log _{4} x=-2$

Problem 2. Solve the exponential function algebraically, approximate the result to three decimal places.
a) $e^{x}=e^{x^{2}-42}$
b) $3\left(4^{x}\right)=36$
c) $8 e^{x}=81$
d) $7^{4-x}=382$
e) $e^{2 x}+18=9 e^{x}$

Problem 3. Solve the logarithmic equation algebraically. Approximate the result to three decimal places.
a) $\log 5 z=4$
b) $\ln \sqrt{x-3}=8$
c) $\ln x+\ln (x-3)=1$
d) $\log _{3}(x+1)+\log _{3} x=\log _{3}(x+4)$
e) $\log _{4} x+\log _{4}(x-15)=2$

Problem 4. Find the equation of the function $f(x)$ passing through the points $(4,2)$ and $(8,32)$ if $f(x)$ is
a) An exponential function.
b) A power function.

